Chapitre 14. Calcul vectoriel

Corrigés des exercices À vous de jouer

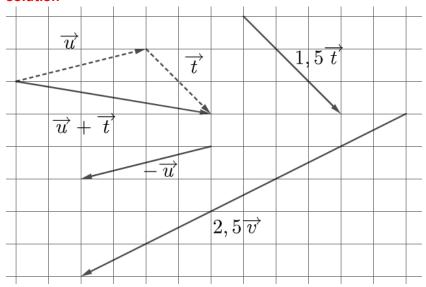
Exercice d'application 1 page 281

Solution

- **a.** On a : $\overrightarrow{MN} = \overrightarrow{GH}$, $\overrightarrow{AB} = \overrightarrow{KL}$, $\overrightarrow{QR} = \overrightarrow{CD}$, $\overrightarrow{EF} = \overrightarrow{OP}$.
- **b.** $(\overrightarrow{IJ}, \overrightarrow{AB})$, $(\overrightarrow{IJ}, \overrightarrow{KL})$, $(\overrightarrow{QR}, \overrightarrow{OP})$, $(\overrightarrow{QR}, \overrightarrow{EF})$, $(\overrightarrow{DC}, \overrightarrow{OP})$, $(\overrightarrow{DC}, \overrightarrow{EF})$ sont des couples de vecteurs de même direction mais pas de même sens.
- **c.** $(\overrightarrow{IJ}, \overrightarrow{GH}), (\overrightarrow{IJ}, \overrightarrow{MN}), (\overrightarrow{AB}, \overrightarrow{GH}), (\overrightarrow{AB}, \overrightarrow{MN}), (\overrightarrow{KL}, \overrightarrow{GH}), (\overrightarrow{KL}, \overrightarrow{MN})$ sont des couples de vecteurs de même norme et pas de même direction.

Exercice d'application 2 page 281

Solution



Exercice d'application 3 page 283

Solution

$$\begin{split} \vec{u} &= 3\vec{\imath} - 4\vec{\jmath} \operatorname{donc} \vec{u} \begin{pmatrix} 3 \\ -4 \end{pmatrix}. \\ \vec{v} &= 6\vec{\imath} + j \operatorname{donc} \vec{v} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \\ \operatorname{et} \vec{w} &= -3\vec{\imath} + 3\vec{\jmath} \operatorname{donc} \vec{w} \begin{pmatrix} -3 \\ 3 \end{pmatrix}. \end{split}$$

Exercice d'application 4 page 283

Solution

$$\vec{t} \begin{pmatrix} -3 \\ -3 \\ 0 \end{pmatrix}$$
 et $\vec{w} \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$.

Exercice d'application 5 page 284

Solution

$$\vec{u} - \vec{v} \begin{pmatrix} 1 - (-3) \\ 2 - 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \text{ et } 2\vec{w} = \begin{pmatrix} 2 \times (-1) \\ 2 \times 5 \end{pmatrix} = \begin{pmatrix} -2 \\ 10 \end{pmatrix}$$

Exercice d'application 6 page 285

Solution

On calcule les coordonnées du vecteur $\overrightarrow{CD} = \begin{pmatrix} -3-1 \\ -5-(-4) \\ 2-3 \end{pmatrix} = \begin{pmatrix} -4 \\ -1 \\ -1 \end{pmatrix}$ et on en déduit que $\|\overrightarrow{CD}\| = \sqrt{(-4)^2+(-1)^2+(-1)^2} = \sqrt{18} = 3\sqrt{2}$.

Exercice d'application 7 page 286

Solution

1^{re} **étape**: comme $1 + 1 \neq 0$, alors le barycentre de (A, 1), (B; 1) et (C, 1).est le barycentre de (M, 2) et (C, 1) avec M le barycentre de (A, 1), (B; 1).

Les coordonnées du point M sont $\left(\frac{1\times 1+1\times 2}{1+1}; \frac{1\times (-1)+1\times 3}{1+1}\right) = \left(\frac{3}{2}; 1\right)$.

2^e **étape** : alors le barycentre N de (M,2) et (C,1) a pour coordonnées :

$$\left(\frac{2\times\frac{3}{2}+1\times(-3)}{2+1};\frac{2\times1+1\times1}{2+1}\right)=(0;1).$$

Exercice d'application 8 page 288

Solution

1^{re} étape : je calcule les coordonnées des vecteurs.

$$\overrightarrow{AB} \begin{pmatrix} -3 - (-1) \\ -1 - 1 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \end{pmatrix} \text{ et } \overrightarrow{AC} = \begin{pmatrix} \mathbf{1} - (-1) \\ -\mathbf{1} - \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{2} \\ -\mathbf{2} \end{pmatrix}.$$

2^e **étape** : je calcule le produit scalaire \overrightarrow{AB} . \overrightarrow{AC} de deux manières différentes :

- En fonction des coordonnées : \overrightarrow{AB} . $\overrightarrow{AC} = -2 \times 2 + -2 \times (-2) = 0$
- En fonction de l'angle $(\overrightarrow{AB}, \overrightarrow{AC}) : \overrightarrow{AB}. \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times cos(\widehat{BAC})$

3º étape: je conclus: \overrightarrow{AB} . $\overrightarrow{AC} = 0 = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times cos(\widehat{BAC})$ donc $cos(\widehat{BAC}) = 0$ et $\widehat{BAC} = 90$ °.