Chapitre 02. Dérivation et étude de fonction

Corrigés des exercices À vous de jouer

Exercice d'application 1 page 25

Solution

$$f'(0) = -5$$
 et $f'(2) = 7$.

Exercice d'application 2 page 26

Solution

a.
$$f'(x) = 2023x^{2022}$$

b.
$$g'(x) = 4$$

c.
$$h'(x) = -7x^{-8} = -\frac{7}{x^8}$$

Exercice d'application 3 page 27

Solution

a.
$$f'(x) = 15x^4$$

a.
$$f'(x) = 15x^4$$
 b. $f'(x) = \frac{8x+3}{4x^2+3x+2}$

c.
$$f'(x) = (1 - x)e^{-x}$$

Exercice d'application 4 page 28

Solution

On calcule $g'(x) = 4x^2 - 12x + 9$ puis :

x	-3		$\frac{3}{2}$		3
g'(x)		+	0	+	
Variations de g	$-\frac{243}{2}$	_▼	0	▼	9 2

Exercice d'application 6 page 31

On lit
$$\lim_{x \to -\infty} f(x) = -2$$
; $\lim_{x \to +\infty} f(x) = -2$; $\lim_{x \to -2} f(x) = -\infty$; $\lim_{x \to -2} f(x) = +\infty$;

$$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = +\infty \text{ et } \lim_{\substack{x \to 2 \\ x > 2}} f(x) = -\infty.$$

On peut donc en déduire que la courbe C_f admet deux asymptotes verticales d'équation x = -2 et x=2 et une asymptote horizontale d'équation y=-2 au voisinage de $-\infty$ et de $+\infty$.

Exercice d'application 7 page 33

Solution

a. $\lim_{x \to -\infty} (3x^2 + e^x) = +\infty$ par somme.

b. $\lim_{x \to +\infty} x^3 \ln(x) = +\infty$ par produit.

c. $\lim_{\begin{subarray}{c} x \to 0 \\ x > 0 \end{subarray}} \frac{\ln(x)}{x - 1} = +\infty \text{ par quotient.}$

Exercice d'application 8 page 33

Solution

a.
$$\lim_{x \to -\infty} (x^2 - x + 1)^4 = +\infty$$

b.
$$\lim_{x \to -1} \ln(x^2 + 2x + 1) = -\infty$$

Exercice d'application 9 page 35

Solution

On trouve donc:

$$f(x) = \sqrt{2x+1} = 1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{5}{8}x^4 + \frac{7}{8}x^5 + x^5\varepsilon(x) \text{ avec } \lim_{x \to 0} \varepsilon(x) = 0.$$

Exercice d'application 10 page 35

Solution

a. D'après le cours, l'équation réduite de la tangente T à la courbe représentative C_f au point d'abscisse 0 est y = 2x.

b. Puisque $f(x) - (2x) = -\frac{4}{3}x^3$, on étudie alors le signe de $-\frac{4}{3}x^3$ au voisinage de 0. On sait que $-\frac{4}{3}x^3$ est négatif pour tout réel $x \in [0; +\infty[$ donc la courbe représentative C_f est au-dessous de la tangente T sur $[0; +\infty[$ et que $-\frac{4}{3}x^3$ est positif pour tout réel $x \in]-\infty; 0]$ donc la courbe représentative C_f est au-dessus de la tangente T sur $]-\infty; 0]$.

Exercice d'application 11 page 37

Solution

a. On utilise la formule
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
 avec $u(x) = \tan(x)$ et $v(x) = x$.

On obtient
$$f'(x) = \frac{(1 + \tan^2(x))x - \tan(x)}{x^2} = \frac{x \tan^2(x) - \tan(x) + x}{x^2}$$
.

b. On utilise la formule (uv)' = u'v + uv' avec u(x) = x et $v(x) = \arctan(x)$.

On obtient
$$f'(x) = 1 \times \arctan(x) + x \times \left(\frac{1}{1+x^2}\right) = \arctan(x) + \frac{x}{1+x^2}$$
.