Chapitre 01. Fonctions de référence

Corrigés des exercices À vous de jouer

Exercice d'application 1 page 9

Solution

g(x) est de la forme ax+b avec a=-5<0 donc g est une fonction affine strictement décroissante et $g(x)=0 \Leftrightarrow x=\frac{2}{5}$ d'où le tableau de signes suivant :

		5	
Х	-∞	2	+∞
		- 5	
Signe de $g(x)$	+	0 _	-

Exercice d'application 2 page 11

Solution

$$\Delta = 81 > 0$$
 puis $x_1 = -1$ et $x_2 = \frac{7}{2}$.

D'où le tableau de signes :

x	-∞	-	-1		$\frac{7}{2}$	•	+∞
f(x)		+	0	_	0	+	

Exercice d'application 3 page 13

Solution

$$D = e^{2x+5}$$
 et $E = \ln(3) - \ln(x)$.

Exercice d'application 4 page 13

Solution

Pour l'équation $e^{2x+7}=2$ on trouve $x=\frac{\ln(2)-7}{2}$.

Pour l'inéquation $\ln(2x+4) \geqslant 3$ on trouve $S = \left[\frac{e^3-4}{2}; +\infty\right[$.

Exercice d'application 5 page 15

Solution

a.
$$\cos\left(-\frac{\pi}{3}\right) = \frac{1}{2}$$
 et $\sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$.

b.
$$\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$
 et $\sin\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}$.